Optimization of Somatic Inhibition at Critical Period Onset in Mouse Visual Cortex

نویسندگان

  • Hiroyuki Katagiri
  • Michela Fagiolini
  • Takao K. Hensch
چکیده

Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی تأثیر محرومیت از بینایی طی دوره بحرانی تکامل مغز بر بیان زیرواحدهای گیرنده NMDA در هیپوکامپ موش صحرایی

Background and purpose: Visual deprivation during critical period of brain development impairs structure and function of NMDA receptors in visual cortex. Parts of visual signals go to the hippocampus through the visual cortex. Therefore, this study aimed at investigating the effects of visual deprivation during critical period of brain development on NMDA receptor subunits expression in rats’ h...

متن کامل

Visual Deprivation Decreases Somatic GAD65 Puncta Number on Layer 2/3 Pyramidal Neurons in Mouse Visual Cortex

Proper functioning of the visual system depends on maturation of both excitatory and inhibitory synapses within the visual cortex. Considering that perisomatic inhibition is one of the key factors that control the critical period in visual cortex, it is pertinent to understand its regulation by visual experience. To do this, we developed an immunohistochemical method that allows three-dimension...

متن کامل

Progressive maturation of silent synapses governs the duration of a critical period.

During critical periods, all cortical neural circuits are refined to optimize their functional properties. The prevailing notion is that the balance between excitation and inhibition determines the onset and closure of critical periods. In contrast, we show that maturation of silent glutamatergic synapses onto principal neurons was sufficient to govern the duration of the critical period for oc...

متن کامل

Critical Period Plasticity Matches Binocular Orientation Preference in the Visual Cortex

Changes of ocular dominance in the visual cortex can be induced by visual manipulations during a critical period in early life. However, the role of critical period plasticity in normal development is unknown. Here we show that at the onset of this time window, the preferred orientations of individual cortical cells in the mouse are mismatched through the two eyes and the mismatch decreases and...

متن کامل

BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex

Maturation of the visual cortex is influenced by visual experience during an early postnatal period. The factors that regulate such a critical period remain unclear. We examined the maturation and plasticity of the visual cortex in transgenic mice in which the postnatal rise of brain-derived neurotrophic factor (BDNF) was accelerated. In these mice, the maturation of GABAergic innervation and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007